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ABSTRACT

In [13] it was demonstrated that the Proper Forcing Axiom implies that

there is a five element basis for the class of uncountable linear orders.

The assumptions needed in the proof have consistency strength of at least

infinitely many Woodin cardinals. In this paper we reduce the upper

bound on the consistency strength of such a basis to something less than

a Mahlo cardinal, a hypothesis which can hold in the constructible universe

L.

A crucial notion in the proof is the saturation of an Aronszajn

tree, a statement which may be of broader interest. We show that if

all Aronszajn trees are saturated and PFA(ω1) holds, then there is a five

element basis for the uncountable linear orders. We show that PFA(ω2)

implies that all Aronszajn trees are saturated and that it is consistent to

have PFA(ω1) plus every Aronszajn tree is saturated relative to the con-

sistency of a reflecting Mahlo cardinal. Finally we show that a hypothesis

weaker than the existence of a Mahlo cardinal is sufficient to force the

existence of a five element basis for the uncountable linear orders.

1. Introduction

In [13] it was shown that the Proper Forcing Axiom (PFA) implies that the

class of uncountable linear orders has a five element basis, i.e., that there is a

list of five uncountable linear orders such that every uncountable linear order

contains an isomorphic copy of one of them. This basis consists of X , ω1, ω
∗
1 ,

C, and C∗ where X is any suborder of the reals of cardinality ω1 and C is

any Countryman line. In fact any five element basis for the uncountable linear

orders must have this form.

Recall that a Countryman line is a linear order whose square is the union

of countably many non-decreasing relations. These linear orders are necessarily

Aronszajn. Their existence was proved by Shelah who conjectured that every

Aronszajn line consistently contains a Countryman suborder [14]. In [1, p. 79]

it is stated that, assuming PFA, every Aronszajn line contains a Countryman

suborder if and only if the Coherent Tree Axiom (CTA) holds:

There is an Aronszajn tree T such that for every K ⊆ T there

is an uncountable antichain X ⊆ T such that ∧(X) is either

contained in or disjoint from K.

Here ∧(X) denotes the set of all pairwise meets of elements of X . Over time,

this conjecture developed in the folklore and at some point it was known to
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be equivalent, modulo PFA, to the assertion that the above list forms a basis

for the class of uncountable linear orders.1 Moreover, this reduction does not

require any of the large cardinal strength of PFA. The reader is referred to the

final section of [18, §4.4] for proofs of the above assertions.

In [13] it is shown that PFA implies CTA. In fact, the conjunction of the

Bounded Proper Forcing Axiom (PFA(ω1)) [8] and the Mapping Reflection Prin-

ciple (MRP) [12] suffices. Since the consistency of MRP requires considerably

large cardinal assumptions2 and since it is required only in Lemma 5.29 of [13],

it is natural to ask what large cardinals, if any, are necessary for CTA. Here we

reduce the consistency strength needed to something less than a Mahlo cardi-

nal,3 a hypothesis which can hold in the constructible universe L.

The main goal of this paper is to prove this Key Lemma from a greatly reduced

hypothesis. A central notion in our analysis is that of the saturation of an

Aronszajn tree T — whenever A is a collection of uncountable downward closed

subsets of T which have pairwise countable intersection, then A has cardinality

at most ω1. When possible, this notion will be considered separately, as it seems

that this could be relevant in other contexts.

Central to the proof of the main result in [13] is the notion of rejection. This

will be defined after recalling some preliminary definitions from [13]. For the

moment, fix an Aronszajn tree T ⊆ 2<ω1 which is coherent, special and closed

under finite modifications,4 and let K be a subset of T .

Definition 1.1: If P is a countable elementary submodel of H(ω2) containing

T , let IP (T ) be the collection of all I ⊆ ω1 such that for some uncountable

Z ⊆ T in P and some t in the downwards closure of Z having height P ∩ ω1, I

is disjoint from

∆(Z, t) = {∆(s, t) : s ∈ Z}.

It is always the case that IP (T ) is closed under finite unions and subsets.

The former property uses the properties of T and is non-trivial; the argument

1 It seems that the speculation of the consistent existence of a finite basis for the un-

countable linear orders first appeared in print in [3], although, its equivalence to Shelah’s

conjecture was unknown at that point.
2 The current upper bound is a supercompact cardinal [12].
3 A regular cardinal κ is Mahlo, if the set of regular cardinals less than κ is stationary in

κ.
4 The tree T (̺3) of [18] is such an example.
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is similar to the proof of [15, Lemma 4.1]. Similarly, IP (T ) remains the same

if one takes t to be a fixed member of TP∩ω1
instead of letting t vary.

Definition 1.2: If X is a finite subset of T , K(X) is the set of all γ which are

less than the heights of all elements of X and satisfy s ↾ γ ∈ K for all s in X .

Definition 1.3: If X is a finite subset of T and P is a countable elementary

submodel of H(ω2), then P rejects X if K(X \ P ) is in IP (T ).

It is shown in [13] that the following lemma (Lemma 5.29 of [13]), taken in

conjunction with PFA(ω1), is sufficient to prove the existence of an uncountable

antichain X ⊆ T such that ∧(X) is contained in or disjoint from K.

Key Lemma 1.4 [13]: (MRP) If M is a countable elementary submodel of

H(22ω1 +
) which contains T and K and X is a finite subset of T , then there

exists a closed unbounded set E of countable elementary submodels of H(ω2)

such that E is in M and either every element of E ∩M rejects X or no element

of E ∩M rejects X .

We will begin by defining a combinatorial statement ϕ in Section 2 and show-

ing that this statement implies the Key Lemma. The statement ϕ is a strength-

ening of Aronszajn tree saturation — the assertion that every Aronszajn

tree is saturated. Moreover, ϕ is shown to be equivalent to Aronszajn tree

saturation in the presence of PFA(ω1). In Section 3 we will demonstrate that

PFA(ω2) implies ϕ. This reduces the upper bound on the consistency strength

of Shelah’s conjecture to something less than the existence of 0♯ but greater

than a weakly compact cardinal. Section 4 further refines the argument to

show that an instance of ϕ can be forced by a proper forcing without a need for

large cardinal assumptions. This is then implemented in Section 5 to further

optimize the upper bound on the consistency strength of a five element basis for

the uncountable linear orders to something less than the existence of a Mahlo

cardinal.

The notation and terminology used in this paper is fairly standard. All

ordinals are von Neumann ordinals; they are the sets of their predecessors.

The cardinal iα is defined recursively so that i0 = ω, iα+1 = 2iα , and iδ =

supα<δ iα for limit δ. The reader is referred to [9] as a general reference for Set

Theory. In this paper, Aronszajn tree or A-tree will mean an uncountable

tree in which all levels and chains are countable. A subtree of an A-tree T is
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an uncountable downward closed subset of T . The reader is referred to [10] or

[17] for further reading on bounded fragments of PFA.

2. Aronszajn tree saturation

Recall the notion of the saturation of P(ω1)/NS:

Any collection of stationary sets, which have pairwise non-

stationary intersection, has cardinality at most ω1.

Now consider the following statement ψNS(A ) for a collection A of subsets

of ω1:

There is a club E ⊆ ω1 and a sequence 〈Aξ : ξ < ω1〉 of elements

of A such that for all δ in E, there is a ξ < δ with δ in Aξ.

The assertion ψNS that ψNS(A ) holds for every predense set A ⊆ P(ω1)/NS is

in fact equivalent to the saturation of P(ω1)/NS. This was used to prove that

Martin’s Maximum implies that P(ω1)/NS is saturated, [7]. The significance

of ψNS(A ), from our point of view, is that it implies that A is predense and is

Σ1 in complexity and, therefore, upwards absolute.

In this section we will be interested in analogous assertions about subtrees of

an A-tree.5

Definition 2.1: An A-tree T is saturated if whenever A is a collection of

subtrees T which have pairwise countable intersection, A has cardinality at

most ω1.

This statement follows from the stronger assertion shown by Baumgartner to

hold after Levy collapsing an inaccessible cardinal to ω2 [4].

For every A-tree T , there is a collection B of subtrees of T such

that B has cardinality ω1 and every subtree of T contains an

element of B.

Unlike the case P(ω1)/NS, the maximality of an ω1-sized antichain of subtrees

can be shown not to be upwards absolute.6 However, this leaves open the

5 Actually, all statements about the saturation of an A-tree make sense in the broader

context of all ω1-trees. We will not need this generality and in fact the saturation of all

A-trees implies the more general case by Todorcevic’s construction presented in Section

2 of [4].
6 This can be derived from the arguments in [16, §8] and the construction in [4, §2]. An

explicit argument for this can be found in [11].
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question of how to obtain the consistency of A-tree saturation in the presence

of a forcing axiom. It is not difficult to show that both Chang’s Conjecture

and the saturation of P(ω1)/NS each imply that all A-trees are saturated.

Therefore, Martin’s Maximum implies that all A-trees are saturated. We will

pursue a different proof which is weaker in terms of consistency strength and

somewhat different in character.

If F is a collection of subtrees of T , then F⊥ is the collection of all subtrees

B of T such that for every A in F , A ∩ B is countable. If F⊥ is empty, then

F is said to be predense. For F , a collection of subtrees of an A-tree T , we

define the following assertions:

ψ(F ) There is a closed unbounded set E ⊆ ω1 and a continuous chain

〈Nν : ν ∈ E〉 of countable subsets of F such that for every ν in E

and t in Tν there is a νt < ν such that if ξ ∈ (νt, ν) ∩ E, then there is

A ∈ F ∩Nξ such that t ↾ ξ is in A.

ϕ(F ) There is a closed unbounded set E ⊆ ω1 and a continuous chain

〈Nν : ν ∈ E〉 of countable subsets of F ∪ F⊥ such that for every

ν in E and t in Tν either

(1) there is a νt < ν such that if ξ ∈ (νt, ν)∩E, then there is A ∈ F∩Nξ

such that t ↾ ξ is in A, or

(2) there is a B in F⊥ ∩Nν such that t is in B.

The following proposition, together with Lemma 4.3 below, captures the im-

portant properties of ψ(F ).

Lemma 2.2: Let F be a fixed family of trees. ψ(F ) is a Σ1-formula with

parameters F , T , and ω1 which implies that F is predense.

Proof. Let ψ0 be the conjunction of the following formulas:

∀α ∈ E(α ∈ ω1)

∀α ∈ ω1∃β ∈ E(α ∈ β)

∀α ∈ ω1(¬(α ∈ E) → ∃β ∈ α∀γ ∈ α((γ ∈ E) → (γ ∈ β))).

Clearly, ψ0 asserts that E is a closed unbounded subset of ω1. Similarly, the

assertion ~N = 〈Nν : ν ∈ E〉 is a continuous chain of countable subsets of F is

a Σ0-formula ψ1 with parameters E and F . Finally let ψ2 be the Σ0-formula

asserting that for every ν in E and t in Tν there is a νt < ν such that if

ξ ∈ (νt, ν) ∩ E, then there is A ∈ F ∩Nξ such that t ↾ ξ is in A. Then ψ(F )
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is the Σ1-formula

∃E∃ ~Nψ0 ∧ ψ1 ∧ ψ2.

In order to see that ψ(F ) implies that F is predense, suppose that S is a

subtree of T and that 〈Nν : ν ∈ E〉 witnesses ψ(F ). Let M be a countable

elementary submodel of H(2ω1+) which contains T , S and 〈Nν : ν ∈ E〉 as

elements. Set δ = M ∩ ω1 and select a t in S of height δ. By choice of

〈Nν : ν ∈ E〉, there is δt < δ such that if ξ ∈ (δt, δ) ∩ E, then there is an A in

F ∩Nξ with t ↾ ξ in A. Let N be a countable elementary submodel of H(ω2)

such that N is in M and T , S, 〈Nν : ν ∈ E〉, and δt are in N . By the continuity

assumption on 〈Nν : ν ∈ E〉 and elementarity of N , ν = N ∩ ω1 is in E and

Nν ∩ F =
⋃

ξ∈ν∩E

Nξ ∩ F = N ∩ F .

Hence, there is an A in F ∩N such that t ↾ ν is in A. Since t ↾ ν is in S ∩ A

but not in N , the elementarity of N implies that S ∩ A must be uncountable,

finishing the proof.

While ϕ(F ) and ψ(F ) are equivalent if F is predense, ϕ(F ) is, in general,

not a Σ1-formula in F and T . Let ϕ be the assertion that whenever T is an

A-tree and F is a family of subtrees T , ϕ(F ) holds and let ψ be the analogous

assertion but with quantification only over F which are predense. As noted, ϕ

implies ψ. Also, if A is a predense family of subtrees of T which have pairwise

countable intersects and 〈Nν : ν ∈ E〉 witnesses ψ(A ), then
⋃

ν∈E Nν = A

and, in particular, A has size at most ω1. Hence both φ and ψ imply A-tree

saturation.

We will now show the relevance of ϕ to our main goal. Before proceeding, it

will be useful to reformulate the notion of rejection presented in the introduc-

tion.

Definition 2.3: Let T [n] denote the collection of all elements τ of T n such that

every coordinate of τ has the same height and, when considered as a sequence

of elements of T , the coordinates of τ are non-decreasing in the lexicographical

order on T . T [n] will be considered as a tree with the coordinate-wise partial

order induced by T .

Remark 2.4: Intuitively, elements of T [n] are n-element subsets of T . In order

to ensure that T [n] is closed under taking restrictions, it is necessary to allow for
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n-element sets to have repetitions and the above definition is a formal means to

accommodate this. We will abuse notation and identify elements of T [n] which

have distinct coordinates with the set of their coordinates. In our arguments,

only the range of these sequences will be relevant.

Definition 2.5: Let n < ω be fixed. For any uncountable set Z ⊆ T , let RZ be

downward closure of the set of elements Y of T [n] such that ∆(Z, t)∩K(Y ) = ∅

for some element t of the downward closure of Z with height(t) = height(Y ).

Let Rn denote the collection of all RZ as Z ranges over the uncountable subsets

of T .

Lemma 2.6: Suppose that P is a countable elementary submodel of H(ω2)

which has T as a member. For any Y ∈ T [n] with height(Y ) ≥ P ∩ω1, P rejects

Y if and only if Y ↾ (P ∩ ω1) is in RZ for some Z ∈ P .

Proof. Suppose first that P rejects Y . Then there exist Z ⊆ T in P and

t ∈ (Z ∩ TP∩ω1
) \ P such that ∆(Z, t) ∩K(Y ) = ∅. Since K(Y ) ∩ (P ∩ ω1) =

K(Y ↾ (P ∩ ω1)), it follows that Y ↾ (P ∩ ω1) is in RZ .

In the other direction, if Y ↾ (P ∩ ω1) is in RZ for some Z ∈ P , then there

exist Y ′ ≥ Y ↾ (P ∩ ω1) in RZ and t ∈ Z ∩ T such that height(t) ≥ height(Y ′)

and ∆(Z, t) ∩ K(Y ′) = ∅. Then K(Y ′) ∩ (P ∩ ω1) = K(Y ↾ (P ∩ ω1)) and

∆(Z, t) ∩ (P ∩ ω1) = ∆(Z, t ↾ (P ∩ ω1)). Hence ∆(Z, t ↾ (P ∩ ω1)) ∩K(Y ) = ∅,

which means that P rejects Y .

Lemma 2.7: Suppose that T is a coherent A-tree which is closed under finite

changes. If ϕ(Rn) holds for every n < ω, then the Key Lemma holds for T .

Proof. Assume the hypothesis of the lemma and let M and X be given as in the

statement of the Key Lemma. Without loss of generality, we may assume that

X is in T
[n]
M∩ω1

for some n < ω. Note that Rn is Σ1-definable using parameters

for T and K and, therefore, there is an ~N = 〈Nν : ν ∈ E〉 in M which witnesses

ϕ(Rn). Either there is a νX < M ∩ ω1 such that for each ξ ∈ E ∩ (νX ,M ∩ ω1)

there is an R ∈ Nξ ∩ F with X ↾ ξ ∈ R or there is a B in Rn
⊥ ∩NM∩ω1

with

X ∈ B.

In the first case, let E be the set of countable P elementary submodels of

H(ω2) which satisfy ~N ∈ P and P ∩ ω1 > νX . Then every member P of E

contains NP∩ω1
and thus contains an R ∈ Rn with X ↾ (P ∩ ω1) in R. By

Claim 2.6, P rejects X .
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In the second case, let E be the set of all P countable elementary submodels

of H(ω2) with K, T , and B in P . If P in E ∩M were to reject X , there would

be an R in Rn∩P with X ↾ (P ∩ω1) ∈ R. It would follow that X ↾ (P ∩ω1) is in

B∩R, which by elementarity of P would imply that B∩R is uncountable which

is contrary to B being in Rn
⊥. Hence no element of E ∩M rejects X .

3. PFA(ω2) implies ϕ

In this section we will show that PFA(ω2) implies ϕ. If λ is a cardinal, then

PFA(λ) is the fragment of PFA in which only antichains of size at most λ

are considered, [8]. We will use the following reformulation which is due to

Miyamoto, [10]:

PFA(λ): For every A in H(λ+) and Σ0-formula φ, if some proper partial

order forces ∃Xφ(X,A), then there is a stationary set ofN in [H(λ+)]ω1

such that A is in N and H(ω2) satisfies ∃Xφ(X,πN (A)), where πN is

the transitive collapse of N .

In [10] it is also shown that PFA(ω2) is equiconsistent with the existence of

a cardinal κ which is H(κ+)-reflecting. Such cardinals are larger than weakly

compact cardinals but still relativize to L and hence do not imply the exis-

tence of 0♯. In this section we show that PFA(ω2) implies that every A-tree is

saturated. First, we recall some definitions from [12].

Definition 3.1: Let θ be a regular cardinal, let X be uncountable and let M

be a countable subset of H(θ) such that [X ]ω is in M . A subset Σ of [X ]ω

is M-stationary if and only if for all E in M such that E ⊆ [X ]ω is club,

Σ ∩ E ∩M is non-empty.

The Ellentuck topology on [X ]ω is obtained by declaring a set open if and

only if it is the union of sets of the form

[x,N ] = {Y ∈ [X ]ω : x ⊆ Y ⊆ N}

where N ∈ [X ]ω and x ⊆ N is finite. When we say ‘open’ in this paper we refer

to this topology.

Definition 3.2: A set mapping Σ is open stationary if and only if there is an

uncountable set X = XΣ and a regular cardinal θ = θΣ such that [X ]ω ∈ H(θ),
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dom(Σ) is a club in [H(θ)]ω and Σ(M) ⊆ [X ]ω is open and M -stationary, for

every M in the domain of Σ.

Definition 3.3: Suppose Σ is an open stationary set mapping. We say that

〈Nξ : ξ < ω1〉 is a reflecting sequence for Σ, if it is a continuous ∈-chain

contained in the domain of Σ such that for all limit ν < ω1, there is a ν0 < ν

such that if ν0 < ξ < ν, then Nξ ∩X is in Σ(Nν).

The Mapping Reflection Principle (MRP) is the assertion that every

open stationary set mapping which is defined on a club admits a reflecting

sequence. In [12] it was shown that MRP follows from PFA, by demonstrating

the following theorem which will be useful to us here.

Theorem 3.4: [12] If Σ is an open stationary set mapping defined on a club,

then there is a proper forcing which adds a reflecting sequence for Σ.

Lemma 3.5: Suppose that T is a saturated A-tree. Then for every family F

of subtrees of T there is a subfamily F ′ of F of cardinality at most ω1 such

F⊥ = (F ′)⊥.

Proof. Supposing that the lemma is false, for each α < ω2, recursively choose

subtrees Fα, Rα of T such that each Fα ∈ F , each Rα ∩Fα is uncountable, and

Rα ∩Fβ is countable for each β < α. Then the trees Fα ∩Rα form an antichain

of cardinality ω2.

Lemma 3.6: Let κ be a cardinal greater than or equal to (2ω1)+. Suppose that

T is an A-tree, F is a collection of subtrees of T and M is a countable subset

of H(κ) which has T and F as members and satisfies all axioms of ZFC except

the power set axiom. If t is an element of T of height M ∩ ω1 and

{P ∈ [H(ω2)]
ω : ∃A ∈ F ∩ P (t ↾ (P ∩ ω1) ∈ A)}

is not M -stationary, then there is an S in M ∩ F⊥ which contains t.

Proof. Let δ = M∩ω1. Let E ∈M be a club of countable elementary submodels

of H(ω2) such that E ∩M is disjoint from

{P ∈ [H(ω2)]
ω : ∃A ∈ F ∩ P (t ↾ (P ∩ ω1) ∈ A)}.

Let S be the set of all s ∈ T such that there exist no P in E with P ∩ ω1 <

height(s) and A in F ∩ P such that s ↾ (P ∩ ω1) is in A. We claim that t ∈ S.

Otherwise, there would exist a P in E with P ∩ ω1 < δ and an A in F ∩ P
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such that t ↾ (P ∩ ω1) is in A. Letting γ = P ∩ ω1, this is a statement about

t ↾ γ, which is an element of M , so by the elementarity of M there would exist

a P in E ∩M with P ∩ ω1 = γ and an A in F ∩ P such that t ↾ γ is in A,

contradicting our choice of E. Therefore t is in S.

Clearly S is downwards closed and it is uncountable since it is an element of

M but not a subset of M . We are finished once we show that S∩A is countable

for every element A of F . Suppose not. Since S is in M , by elementarity there

must be such an A in M ∩ F . Let P be an element of E which contains both

A and S. Since A ∩ S is uncountable and downwards closed, there must be an

s in A∩S of height (P ∩ω1) + 1. But this contradicts the definition of S.

Theorem 3.7: PFA(ω2) implies ϕ.

Proof. In [12], it is shown that PFA(ω1) implies that 2ω1 = ω2 and hence

PFA(ω2) is equivalent to PFA(2ω1). Let

T = {τ(α, i) : α < ω1 and i < ω}

be such that τ(α, i) is of of height α for every α and i. Define Σi
F

as follows.

The domain of Σi
F

is the set of all countable subsets M of H(2ω1+) such that

M ∩H(ω2) is an elementary submodel of H(ω2), F and F⊥ are in M , and M

satisfies that F ∪F⊥ is predense. If M is in the domain of Σi
F

and there is no

S in M ∩ F⊥ with τ(M ∩ ω1, i) in S, then let Σi
F

(M) be the collection of all

P ∈ [H(ω2)]
ω such that either P ∩ ω1 is not an ordinal or else there is an A in

P ∩ F such that τ(M ∩ ω1, i) ↾ (P ∩ ω1) is in A. If there is an S in M ∩ F⊥

with τ(M ∩ ω1, i) in S, put Σi
F

(M) to be all of [H(ω2)]
ω. Lemma 3.6 implies

that Σi
F

is open and M -stationary.

We will now argue that PFA(2ω1) implies that each Σi
F

admits a reflecting

sequence. By the proof of Theorem 3.1 of [12], there is a proper forcing which

introduces a reflecting sequence for each Σi
F

. Following the proof of Lemma

2.2, let φi( ~N,F ,F⊥, τ) be a Σ1-formula asserting that ~N is a reflecting se-

quence for Σi
F

. While Σi
F

is not an element of H(2ω1+), it is a definable

class within this structure and hence φi( ~N,F ,F⊥, τ) satisfies the hypothesis

of PFA(2ω1). Applying Miyamoto’s reformulation of PFA(2ω1), there is an el-

ementary submodel M of H(2ω1+) of size ω1 which contains ω1 as a subset,

F , F⊥, τ as elements and is such that H(ω2) satisfies there is an ~N such that

φi( ~N, π(F ), π(F⊥), π(τ)). Here π is the transitive collapse of M . Notice that
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since ω1 is a subset of M , the collapsing map fixes elements of H(ω2). In par-

ticular, it fixes τ and elements of F and F⊥. It follows that the postulated ~N

really is a reflecting sequence for Σi
F

.

Now fix, for each i, a reflecting sequence 〈M i
ν : ν < ω1〉 for Σi

F
. Let E be the

collection of all ν such that M i
ν ∩ ω1 = ν, for each i. Letting

Nν = (F ∪ F
⊥) ∩

⋃

i<ω

M i
ν ,

it is easily checked that 〈Nν : ν ∈ E〉 is a witness to ϕ(F ).

Lemma 3.8: For a given family F of subtrees of an Aronszajn tree T , there is

a proper forcing extension which satisfies ϕ(F ).

Proof. Construct a countable support iteration of length ω such that at the

i-th stage of the iteration, a reflecting sequence is added to Σ̇i
F

by a proper

forcing. It is easily checked that the iteration generates a generic extension

which satisfies ϕ(F ).

Remark 3.9: The reader is cautioned that it does not immediately follow that if

F is moreover predense, then there is a proper forcing extension in which ψ(F )

holds, since a priori F may fail to be predense in the generic extension. This is

addressed in the next section. Similarly, if F is defined by a Σ1-formula, then

there are two versions of F in a generic extension — Ḟ and F̌ . This lemma

only implies that φ(F̌ ) can be forced.

Corollary 3.10: If PFA(ω1) holds and T is a saturated A-tree, then ϕ(F ) is

true for all families F of subtrees of T .

Proof. Let T be an A-tree and let F be a family of subtrees of F . Applying

Lemma 3.5, fix a subfamily F ′ of F of cardinality at most ω1 such that F⊥ =

(F ′)⊥. Then ϕ(F ′) implies ϕ(F ), and ϕ(F ′) is a Σ1-statement in a parameter

listing T and the members of F ′. Theorem 3.7 shows that there is a proper

forcing making this Σ1-statement hold.

4. Forcing instances of ψ

As already noted, Lemma 3.8 comes short of showing that, for a given predense

F , there is a proper forcing extension in which ψ(F ) holds. Upon forcing a

reflecting sequence for Σ0
F

, F may fail to be predense.



Vol. 164, 2008 LINEAR BASIS 13

A similar problem arises in the context of P(ω1)/NS. For a given antichain

A in P(ω1)/NS, there is a stationary subset S of [ω1 ∪A ]ω such that ψNS(A )

is equivalent to S strongly reflecting in the sense of [5, p. 57]. Furthermore,

there is a semi-proper forcing Q such that if generic absoluteness holds for

Q in the sense of the previous section, then S strongly reflects. This does

not ensure, however, that ψNS(A ) holds after forcing with Q. In fact, while

semi-proper forcing can always be iterated with revised countable support while

preserving ω1, there are models such as L in which there is no set forcing which

makes P(ω1)/NS saturated. Hence, in the case of P(ω1)/NS, the discrepancy

between forcability and the consequences of generic absoluteness can represent

an insurmountable difficulty.

In this section we will see that the saturation of A-trees is fundamentally dif-

ferent in this regard. We will show that there is a single set mapping associated

with a given predense F such that if the set mapping reflects, ψ(F ) is true.

Lemma 4.1: Suppose that n ∈ ω, T is an A-tree, F is a predense collection of

subtrees of T and M is a countable elementary submodel of H((in+2)
+
) which

contains T and F as elements. Let δ = M ∩ ω1. Suppose X is an n-element

subset of the δ-th level. Then

{P ∈ H(ω2) : ∀t ∈ X∃A ∈ F ∩ P (t ↾ (P ∩ ω1) ∈ A)}

is M -stationary.

Proof. We prove this by an induction on n. In the base case n = 0, there is

nothing to show. Now suppose that the lemma is true for n and let M be

a countable elementary submodel of H((in+3)
+) and X be an n + 1-element

subset of the δ-th level of T . Let E be a given closed unbounded subset of

[H(ω2)]
ω which is in M . Let t be any element of X and let X0 = X \ {t}. The

set of elements of [H(ω2)]
ω of the formN∩H(ω2), for some countable elementary

submodel N of H((in+2)
+), is a club set in M , so, applying Lemma 3.6, there

is a countable elementary submodel N of H((in+2)
+) such that F , E are in

N and there is an A in F ∩N such that t ↾ (N ∩ ω1) is in A. Let E∗ be the

set of all P in E such that A is in P . Clearly, E∗ is a club and belongs to N .

Applying the inductive hypothesis to N and X0, there is a P in E∗ ∩ N such

that for every s in X0, there is a A′ in F ∩P such that s ↾ (P ∩ω1) is in A′. But

A is also in P and t ↾ (P ∩ ω1) is in A as well since it is downward closed.
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Lemma 4.2: If F is a predense family of subtrees of T , then there is an open

stationary set mapping ΣF such that if ΣF admits a reflecting sequence, then

ψ(F ) is true.

Proof. Fix, for each limit α < ω1, a cofinal Cα ⊆ α of order type ω. Let

T = {t(α, i) : α < ω1 and i < ω} be such that for every α and i, the height

of t(α, i) is α. If M is a countable elementary submodel of H((iω+1)
+

), define

ΣF (M) as follows. Let δ = M∩ω1 and let ΣF (M) be the set of all P ∈ [H(ω2)]
ω

such that either P is not an elementary submodel of H(ω2) or else for every

i < |CM∩ω1
∩ P | there is an A in P ∩ F which contains t(δ, i) ↾ (P ∩ ω1).

It is easily checked that ΣF (M) is open for every M . It should be clear

that a reflecting sequence of ΣF can easily be modified to produce a witness

〈Nν : ν ∈ E〉 to ψ(F ). Therefore, it remains to show that ΣF (M) is M -

stationary for all M in the domain of ΣF . To see this, let E ⊆ H(ω2) be

a club. Find a countable elementary submodel N of H((iω)
+
) which is an

element of M and contains E as a member. Denote n = |CM∩ω1
∩N | and apply

Lemma 4.1 to N and n to find a P in E ∩ ΣF (M) ∩M .

Lemma 4.3: If F is a predense family of subtrees of an A-tree, then there is a

proper forcing extension in which ψ(F ) holds.

Proof. By the proof of Theorem 3.1 of [12], there is a proper forcing which adds

a reflecting sequence to the ΣF of Lemma 4.2.

5. Relative consistency results

In this section we will present a number of iterated forcing constructions aimed

at proving upper bounds on the consistency of ϕ and the existence of a five

element basis for the uncountable linear orders. Throughout this section we

will utilize the following standard facts about L.

Theorem 5.1 (see [6, 2.2]): Suppose V = L. If κ is an uncountable regular

cardinal and E is a stationary subset of κ, then ♦E(κ) holds: there is a sequence

〈Aξ : ξ ∈ E〉 such that for all X ⊆ κ,

{ξ ∈ E : X ∩ ξ = Aξ}

is stationary.
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Remark 5.2: If ♦E(κ) holds and every element of E is an inaccessible cardi-

nal, then ♦E(κ) is equivalent to the following stronger statement: There is a

sequence 〈Aδ : δ ∈ E〉 of elements of H(κ) such that if Xi (i < n) is a finite

sequence of subsets of H(κ), then there is a stationary set of δ in E such that

Aδ = 〈Xi ∩H(δ) : i < n〉.

It is easily checked that if κ is a regular cardinal in V , then it is also a regular

cardinal in L. Hence, if κ is inaccessible (Mahlo), then L satisfies that κ is

inaccessible (Mahlo). Reflecting cardinals also relativize to L [8].

Theorem 5.3: Suppose that there is a Mahlo cardinal. Then there is a forcing

extension of L which satisfies ϕ.

Proof. Let κ be Mahlo and note that κ is also Mahlo in L; from now on, work in

L. Let E be the stationary set of inaccessible cardinals less than κ and, applying

Theorem 5.1, let 〈Aδ : δ ∈ E〉 be a ♦E(κ)-sequence in the revised sense stated

in Remark 5.2. Construct a countable support iteration 〈Pα; Qα : α < κ〉 of

proper forcing notions of size < κ. If α ∈ E and Aα = (Ṫ , Ḟ ), where Ṫ is

a Pα-name for an A-tree and Ḟ is a Pα-name for a family of subtrees of Ṫ ,

then we let Q̇α be a proper forcing in H(κ) which first forces ψ(Ḟ ∪ Ḟ⊥) and

then forces ϕ(Ḟ ). In other cases we can let Q̇α be any proper forcing in H(κ).

Let Pκ be the limit of the iteration. By standard arguments the forcing Pκ is

proper and κ-c.c. [9].

Suppose now Ṫ is a Pκ-name for an A-tree and Ḟ is a Pκ-name for a family

of subtrees of Ṫ . Let Ḟδ be the set of all Pδ-names Ṡ which are forced by

every condition to be in Ḟ . Since κ is Mahlo and each of the iterands of Pκ

has cardinality less than κ, there is a relative closed and unbounded set D of δ

in E, such that Pδ has the δ-c.c., Ṫ is a Pδ-name, and if Ṡ is a Pδ-name for a

subtree of Ṫ which has countable intersection with every element of Ḟδ, then Ṡ

is forced to be in Ḟ⊥. Since 〈Aα : α ∈ E〉 is a ♦E(κ)-sequence, there is a δ in D

such that Aδ = (Ṫ ,Fδ). At stage δ the partial order Q̇δ forces both ψ(Ḟδ ∪ Ḃ)

and ϕ(Ḟδ), where Ḃ is Ḟ⊥
δ computed after forcing with Pδ. By choice of δ, Ḃ

is forced to be a subset of Ḟ⊥. Since ψ(Ḟδ ∪ Ḃ) is a Σ1-formula, it is upwards

absolute and hence forced by Pκ. By Lemma 2.2, Pκ forces Ḟδ∪Ḃ is predense

and hence that Ḟ⊥
δ = Ḟ⊥. Consequently, ϕ(Ḟδ) implies ϕ(Ḟ ).
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Theorem 5.4: If there is a cardinal which is both reflecting and Mahlo, then

there is a proper forcing extension of L which satisfies the conjunction of

PFA(ω1) and ϕ. In particular, the forcing extension satisfies that the uncount-

able linear orders have a five element basis.

Proof. This is very similar to the proof of Theorem 5.3, except that at stages

α < κ which are not in E, we force with partial orders in H(κ) given by an

appropriate book keeping device. Following [8], it is possible to arrange that

PFA(ω1) holds in the generic extension as well.

Theorem 5.5: Suppose that there is an inaccessible cardinal κ such that for

every κ0 < κ, there is an inaccessible cardinal δ < κ such that κ0 is in H(δ) and

H(δ) satisfies that there are two reflecting cardinals which are greater than κ0.

Then there is a proper forcing extension in which κ is ω2 and the uncountable

linear orders have a five element basis.

First observe that by taking a direct sum of trees, Theorems 4.2 implies that

if ~T is an ω-sequence of A-trees and ~F is an ω-sequence such that Fn is a

family of subtrees of Tn, then there is a single set mapping Σ ~F
such that if Σ ~F

admits a reflecting sequence, then ψ(Fn ∪ Fn
⊥) holds for all n < ω. Theorem

5.5 can be proved by iterating the forcings provided by the following lemmas

with appropriate book keeping. By mixing in appropriate σ-closed collapsing

forcings as needed, we may ensure that the iteration has the κ-c.c. but collapses

every uncountable cardinal less than κ to ω1.

Lemma 5.6 (see [18, §4.4]): Let L be an uncountable linear order, X be a set

of reals of size ℵ1, and C be a Countryman order. There is a proper forcing P

of cardinality less than iω which forces that “L contains an isomorphic copy of

X , ω1, ω
∗
1 , C, or C∗” is equivalent to an instance of CTA.

Lemma 5.7: Suppose that T is an A-tree, K is a subset of T , and there is an

inaccessible δ such that H(δ) satisfies that there are two reflecting cardinals.

Then there is a proper forcing in H(δ) which forces the instance of CTA for K

and T .

Proof. If λ is a reflecting cardinal in H(δ), let Pλ denote the proper forcing

which satisfies the λ-c.c. and forces that H(δ)V P
λ satisfies PFA(ω1). If ~F is

an ω-sequence of families of subtrees of A-trees, let Q ~F
be the proper forcing

which forces the conjunction of ψ(Fn ∪Fn
⊥) and ϕ(Fn) for all n. Let λ0 < λ1
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be the two reflecting cardinals in H(δ). We claim that

(Pλ0
∗ Q̇ ~R

) ∗ Ṗλ1

is the desired proper forcing, where Rn is the family of subtrees of T [n] defined

in Section 2. Clearly this forcing is proper and an element of H(δ). It suffices

to show that it forces the instance of CTA for T and K. The key observation

is that, after forcing with Pλ0
, if S is an element of Rn

⊥ for some n, then S

remains in Rn
⊥ after any proper forcing which is in H(δ)V

P
λ0 . This is because

asserting that S is not in R⊥
n is a Σ1-statement with parameters T , K, and S.

By arguments given in the proof of Theorem 5.3, Q ~R
forces ϕ(Ṙn) to be true

for all n and, moreover, that this statement remains true after further forcing

with Pλ1
. Applying Lemma 2.7 in the extension by

(Pλ0
∗ Q̇ ~R

) ∗ Ṗλ1
,

both PFA(ω1) and the Key Lemma for T and K hold. Therefore, by theorems

from [13], the instance of CTA for T and K is true.

6. Concluding remarks and questions

Observe that the property of κ in the statement of Theorem 5.5 is expressible by

a Σ0-formula with no parameters. Hence the least such cardinal is not reflecting

and it is, therefore, possible, if such cardinals exist at all, to produce a forcing

extension of L in which Shelah’s conjecture is true and ω2 is not reflecting in

L. On the other hand, we do not known the answer to the following.

Question 6.1: Suppose that the uncountable linear orders have a five element

basis. Is there a δ < ω2 such that Lδ satisfies “there is a reflecting cardinal?”

It is also natural to ask:

Question 6.2: Does PFA(ω1) imply Aronszajn tree saturation?

The only known direct construction of a failure of A-tree saturation is given

in [4, §2] and is based upon the existence of a Kurepa tree. Baumgartner has

shown that PFA(ω1) implies that there are no Kurepa trees [2, 7.11].7 This is

likely closely related to the consistency strength of ϕ.

7 The hypothesis which appears in [2, 7.11] is PFA but the proof shows that the conclusion

follows from PFA(ω1).
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Question 6.3: If ϕ is true, must ω2 be Mahlo in L?
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